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Abstract

Dynamic behavior of smooth hysteretic systems subjected to harmonic excitation is analyzed. Wen’s
differential equation model for hysteresis, which can be applied to a large class of hysteretic systems, is
used. A piecewise power series expression for hysteretic restoring force is derived from Wen’s model
assuming that steady state force–displacement curve draws a single loop and that the non-linearity of
the restoring force is weak. The method of multiple scales is applied to the equation of motion by using the
piecewise power series expression for the cases of primary and secondary resonance to derive the
approximate solutions and the differential equations governing the amplitude and phase of the solutions.
Phase plane trajectories, resonance curves and stability limit of the solutions are obtained and compared
with the results of numerical integration in order to examine the validity of the present analysis.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Many mechanical and structural systems subjected to severe dynamic loads exhibit hysteretic
behavior. In such systems, the restoring force depends on their past histories and the force–
displacement relationships are not single-valued and draw hysteretic loops. Due to this nature,
hysteretic systems may display complex dynamic behavior and have energy dissipation properties.
Investigating the vibration characteristics of hysteretic systems is important for the reliability and
safety of mechanical and structural systems.
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Recently, bifurcation and chaos in non-linear vibrating systems have drawn much attention.
They have been extensively investigated by using various analytical methods and a vast amount of
knowledge has been obtained for elastic systems. However, these phenomena of hysteretic systems
have not been studied as much as elastic systems in spite of their importance.
This is mainly because the restoring force has a multi-valued nature so that approximate

analytical techniques, which are useful for non-linear elastic systems, cannot be applied directly to
hysteretic systems except for the first order averaging method. Most of the studies from the
viewpoint of non-linear dynamics have been restricted for the case of specific external forcing or
specific softening or hardening systems [1–3].
In the former studies of non-linear vibration of hysteretic systems, Caughey applied the method

of slowly varying parameters, i.e., the first order averaging method to a single-degree-of-freedom
(s.d.o.f.) bilinear hysteretic system subjected to harmonic excitation and obtained the approximate
solution and its stability [4]. His method has been frequently used for various hysteretic systems
under harmonic excitations, such as s.d.o.f. smooth softening systems [5,6], piecewise-linear
systems [6–8], degrading piecewise-linear systems [6,9], degrading smooth softening system [6],
two-d.o.f. bilinear system [10], double pendulum with bilinear hysteretic damping [11] and so on.
Caughey’s method is useful for obtaining the first order approximate solutions for the case of
primary resonance while his method cannot be readily applicable to the higher order solutions.
Concerning higher order approximate analysis, numerical procedures based on the method of
harmonic balance [12] were employed for smooth hysteretic systems [2,13]. The method of
multiple time scales [14] and higher order averaging method [15], which are useful for stability and
bifurcation analyses of weakly non-linear elastic systems, have seldom been applied to hysteretic
systems.
From the viewpoint of non-linear dynamical system, Poddar et al. [16] investigated the

vibrations of an elasto-plastic beam, the Shanley model, under periodic impulse forcing and
numerically confirmed the existence of chaotic motion. Pratap et al. [17,18] analyzed the free and
forced oscillations of a bilinear hysteretic system, which was a simplification of the Shanley model,
under parametric periodic impulse forcing. They revealed that there exist numerous bifurcations
from quasi-periodic motion to chaos-like motion. Pratap and Holmes [1] studied the behavior of a
piecewise linear map which describes the motion of the same bilinear oscillator under parametric
impulse forcing and proved that chaotic motion in the form of a Smale horseshoe [19,20] exists.
Capecchi et al. [9] showed the existence of not only jump phenomena but also Hopf bifurcation
[19,20] in a degrading piecewise linear hysteretic system by applying Caughey’s method. He also
applied a numerical procedure based on the method of harmonic balance to a smooth softening
degrading hysteretic system and showed that the periodic solution became unstable via Hopf
bifurcation and suggested that chaotic motion might appear [2]. Yang et al. [3] investigated a
smooth hysteretic system using a model of Baber and Wen [21] by numerical integration and
demonstrated the occurrence of the chaotic vibration for the case of hardening hysteretic system
under cyclic loading of large amplitude.
In this paper, we investigate smooth hysteretic systems by using the method of multiple time

scales for the cases of primary and secondary resonance. Wen’s differential equation model [22],
which can describe a large class of hysteretic systems is used. In order to apply the method of
multiple time scales, a piecewise power series expression for hysteretic restoring force is proposed.
By using this expression, the method of multiple time scales is applied up to the second order and
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the symmetric approximate solutions and differential equations describing the modulations of the
amplitudes of the solutions are obtained. For the case of primary resonance, phase plane
trajectories and resonance curves of the solutions are obtained. For the case of secondary
resonance, the phase plane trajectories and unstable regions of symmetric solutions are obtained.
It is shown that the symmetric solutions become unstable and non-symmetric solutions diverge in
the secondary resonance region via pitchfork bifurcation [19,20]. Analytical results are compared
with the results of numerical integration of Wen’s model in order to determine the validity of the
present analysis.

2. Model for hysteresis

The equation of motion for a s.d.o.f. hysteretic system subjected to harmonic excitation is of the
form

.x þ %d ’x þ kx þ z ¼ %f cosot; ð1Þ

where x is the displacement, z is the hysteretic restoring force, %d is the damping coefficient, k is the
linear stiffness coefficient, %f and o are the amplitude and frequency of external forcing,
respectively. Using Wen’s differential equation [22], a model for hysteretic restoring force can be
constructed by requiring x and z to satisfy the following differential equation:

’z ¼ A ’x � ð %bj ’xjjzjn�1z þ %g ’xjzjnÞ; ð2Þ

where A; %b and %g are the parameters to control the scale and general shape of the hysteretic loop,
while n controls the smoothness of the loop. By adjusting the values of %b and %g; a wide variety of
smooth restoring forces, such as softening or hardening, narrow or wide loops is described.
Depending on whether %bþ %g is positive or not, this system exhibits softening or hardening
hysteretic characteristics, respectively. As %b increases, the width of the hysteretic loop, i.e., the
dissipation energy due to hysteresis becomes large.
In this paper, we set n ¼ 1 and consider the case of exponential hysteretic restoring force. Then

the equations of motion for the present hysteretic system are the following system of differential
equations:

.x þ %d ’x þ kx þ z ¼ %f cosot;

’z ¼ A ’x � ð %bj ’xjz þ %g ’xjzjÞ: ð3Þ

3. The piecewise power series expression for hysteretic restoring force

Equations of motion (3) for the present system have three state variables: x; ’x and z: The
restoring force z is not expressed by the polynomial of the displacement x: Therefore typical
approximate analytical methods to non-linear vibrating systems, such as the averaging method or
the method of multiple time scales, cannot be applied directly to Eq. (3). In order to use these
methods, the piecewise power series expression for hysteretic restoring force is proposed.

ARTICLE IN PRESS

N. Okuizumi, K. Kimura / Journal of Sound and Vibration 272 (2004) 675–701 677



3.1. Division of hysteretic loop

As shown in Fig. 1(a), we assume that force–displacement curve draws a single loop in
stationary state. The case of double loops (Fig. 1(b)) or more is beyond the scope of this paper.
Depending on the signs of velocity ’x and hysteretic restoring force z; the hysteretic loop can be
divided into four intervals. In each interval, Eq. (3) is integrated and z is described by the
following equations.
Interval(i): ’xp0; zX0

z ¼
�

A � B1e
ð %b�%gÞx

%b� %g
ð %b� %ga0Þ;

Ax þ D1 ð %b� %g ¼ 0Þ:

8><
>: ð4Þ

Interval(ii): ’xp0; zp0

z ¼
�

A � B2e
ð %bþ%gÞx

%bþ %g
ð %bþ %ga0Þ;

Ax þ D2 ð %bþ %g ¼ 0Þ:

8><
>: ð5Þ

Interval(iii): ’xX0; zp0

z ¼
A � B3e

�ð %b�%gÞx

%b� %g
ð %b� %ga0Þ;

Ax þ D3 ð %b� %g ¼ 0Þ:

8><
>: ð6Þ

Interval(iv): ’xX0; zX0

z ¼
A � B4e

�ð %bþ%gÞx

%bþ %g
ð %bþ %ga0Þ;

Ax þ D4 ð %bþ %g ¼ 0Þ;

8><
>: ð7Þ

where Bi and Di are the constants of integration. Hysteretic restoring force z can be expressed in
terms of the exponential functions of displacement x when %b7%ga0:
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Fig. 1. Division of hysteretic loop: (a) single loop; (b) double loop.
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3.2. The piecewise power series expression

We assume that the non-linearity of the restoring force is weak. Introducing small positive
scaling parameter e; the parameters %b and %g which control non-linearity of hysteretic loop are
replaced by eb and eg; respectively. Let t0;y; t3 denote the time for each division point and let
u0;y; u3 denote the displacements at those points as shown in Fig. 1(a). For the hysteretic
restoring force z to be continuous, the following conditions should be satisfied:

(1) When t ¼ t0 and x ¼ u0; zðiÞ ¼ zðivÞ:

A � B1e
eðb�gÞu0

eðb� gÞ
þ

A � B4e
�eðbþgÞu0

eðbþ gÞ
¼ 0: ð8Þ

(2) When t ¼ t1 and x ¼ u1; zðiÞ ¼ zðiiÞ ¼ 0:

A � B1e
eðb�gÞu1 ¼ 0; A � B2e

eðbþgÞu1 ¼ 0: ð9Þ

(3) When t ¼ t2 and x ¼ u2; zðiiÞ ¼ zðiiiÞ:

A � B2e
eðbþgÞu2

eðbþ gÞ
þ

A � B3e
�eðb�gÞu2

eðb� gÞ
¼ 0: ð10Þ

(4) When t ¼ t3 and x ¼ u3; zðiiiÞ ¼ zðivÞ ¼ 0:

A � B3e
�eðb�gÞu3 ¼ 0; A � B4e

�eðbþgÞu3 ¼ 0: ð11Þ

In these equations, zðiÞ to zðivÞ denote z of intervals (i) to (iv), respectively.
By expanding B1;y;B4 and the exponential functions in Eqs. (8)–(11) into power series of e

and equating coefficients of e0; e1 and e2; hysteretic restoring force is denoted by

z ¼ A x �
u0 þ u2

2

� �
þ ez1 þ e2z2 þ Oðe3Þ; ð12Þ

where z1 and z2 are the coefficients of order e and e2; respectively. Let z1 and z2 in intervals
ðiÞ;y; ðivÞ be z11;y; z14 and z21;y; z24; respectively. Their expressions are as follows:

z11 ¼
A

8
fðb� gÞðu0 þ u2Þ

2 � bðu0 � u2Þ
2 � 4ðb� gÞðu0 þ u2Þx þ 4ðb� gÞx2g; ð13Þ

z12 ¼
A

8
fðbþ gÞðu0 þ u2Þ

2 � bðu0 � u2Þ
2 � 4ðbþ gÞðu0 þ u2Þx þ 4ðbþ gÞx2g; ð14Þ

z13 ¼ �
A

8
fðb� gÞðu0 þ u2Þ

2 � bðu0 � u2Þ
2 � 4ðb� gÞðu0 þ u2Þx þ 4ðb� gÞx2g; ð15Þ

z14 ¼ �
A

8
fðbþ gÞðu0 þ u2Þ

2 � bðu0 � u2Þ
2 � 4ðbþ gÞðu0 þ u2Þx þ 4ðbþ gÞx2g; ð16Þ
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z21 ¼
A

48
fð2b2 � g2Þðu0 þ u2Þ

3 þ 6bgu0ðu0 þ u2Þ
2 � 12b2u0u2ðu0 þ u2Þ � 8bgu30g

�
A

8
ðb� gÞfbðu0 � u2Þ

2 � ðb� gÞðu0 þ u2Þ
2gx

�
A

4
ðb� gÞ2ðu0 þ u2Þx2 þ

A

6
ðb� gÞ2x3; ð17Þ

z22 ¼
A

48
fð2b2 � g2Þðu0 þ u2Þ

3 � 6bgu2ðu0 þ u2Þ
2 � 12b2u0u2ðu0 þ u2Þ þ 8bgu32g

�
A

8
ðbþ gÞfbðu0 � u2Þ

2 � ðbþ gÞðu0 þ u2Þ
2gx

�
A

4
ðbþ gÞ2ðu0 þ u2Þx2 þ

A

6
ðbþ gÞ2x3; ð18Þ

z23 ¼
A

48
fð2b2 � g2Þðu0 þ u2Þ

3 þ 6bgu2ðu0 þ u2Þ
2 � 12b2u0u2ðu0 þ u2Þ � 8bgu32g

�
A

8
ðb� gÞfbðu0 � u2Þ

2 � ðb� gÞðu0 þ u2Þ
2gx

�
A

4
ðb� gÞ2ðu0 þ u2Þx2 þ

A

6
ðb� gÞ2x3; ð19Þ

z24 ¼
A

48
fð2b2 � g2Þðu0 þ u2Þ

3 � 6bgu0ðu0 þ u2Þ
2 � 12b2u0u2ðu0 þ u2Þ þ 8bgu30g

�
A

8
ðbþ gÞfbðu0 � u2Þ

2 � ðbþ gÞðu0 þ u2Þ
2gx

�
A

4
ðbþ gÞ2ðu0 þ u2Þx2 þ

A

6
ðbþ gÞ2x3: ð20Þ

At the time for each division point, t0;y; t3; the following relations are satisfied:

u0 ¼ xðt0Þ; ð21Þ

u1 ¼ xðt1Þ ¼
u0 þ u2

2
þ e

b
8
ðu0 � u2Þ

2 þ Oðe2Þ; ð22Þ

u2 ¼ xðt2Þ; ð23Þ

u3 ¼ xðt3Þ ¼
u0 þ u2

2
� e

b
8
ðu0 � u2Þ

2 þ Oðe2Þ: ð24Þ

Eqs. (12)–(24) can be parameterized by u0 and u2 instead of u1 and u3 so that hysteretic
restoring force in steady state can be determined by the maximum and minimum of the
displacement of the periodic solution. Even if %b7%g ¼ 0; that is, z cannot be described in terms of
exponential function, Eqs. (12)–(24) are valid. It is noted that the parameters which correspond to
softening characteristics in Wen’s differential equation may correspond to hardening character-
istics in the piecewise power series expression when the amplitude of response becomes large
because of the approximation of exponential functions with polynomials.
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Using the piecewise power series expression, the equation of motion for the present system is of
the form

.x þ %d ’x þ ðk þ AÞx �
A

2
ðu0 þ u2Þ þ ez1 þ e2z2 þ Oðe2Þ ¼ %f cosot: ð25Þ

The linear natural frequency of this system is given by
ffiffiffiffiffiffiffiffiffiffiffiffi
k þ A

p
:

4. Multiple time scale analysis

We next apply the method of multiple time scales to the present system (25) up to the second
order for the cases of primary and secondary resonance to obtain symmetric solutions and their
stability. It is noted that in this analysis, not only the solution but also the restoring force are
approximated due to the use of the piecewise power series expression.

4.1. Primary resonance

4.1.1. Expansion of the equation of motion
Introducing multiple time scales

Tn ¼ ent; n ¼ 0; 1; 2;y; ð26Þ

The time derivative can be expressed as the following:

d

dt
¼ D0 þ eD1 þ e2D2 þ?; ð27Þ

d2

dt2
¼ D2

0 þ 2eD0D1 þ e2ðD2
1 þ 2D0D2Þ þ?; ð28Þ

where Dn ¼ @=@Tn:
We expand the displacement x and its maximum u0 into the power series of e since u0 is

unknown and determined by xðt0Þ:

x ¼ x0 þ ex1 þ e2x2 þ?; ð29Þ

u0 ¼ u00 þ eu01 þ e2u02 þ?; ð30Þ

where xi and u0i; i ¼ 0; 1; 2; are the terms of OðeiÞ: Since the steady state response in the primary
resonance region can be assumed to be periodic and symmetric, i.e., xðtÞ ¼ �xðt þ p=oÞ; ’xðtÞ ¼
� ’xðt þ p=oÞ for any t; the maximum and minimum of the displacement satisfy the relation

u0 ¼ �u2: ð31Þ

Moreover, we assume that the damping coefficient and the forcing amplitude is small and
introduce a detuning parameter s for the primary resonance region as

%d ¼ ed; %f ¼ ef ; k þ A � o2 ¼ es: ð32Þ
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Substituting Eqs. (27)–(32) into Eq. (25) and equating the coefficient of like powers of e; the
following differential equations are obtained:

e0: D2
0x0 þ o2x0 ¼ 0; ð33Þ

e1: D2
0x1 þ o2x1 ¼ �sx0 � dD0x0 � 2D0D1x0 � z01 þ f cosoT0; ð34Þ

e2: D2
0x2 þ o2x2 ¼ �sx1 � dðD1x0 þ D0x1Þ � D2

1x0 � 2D0D2x0 � 2D0D1x1 � z02; ð35Þ

where z01 and z02 denote the coefficients of order e and e2; respectively, in the expression of z which
is obtained by substituting Eqs. (29)–(31) and (13)–(20) into Eq. (12) and re-expanding z to the
power series of e: The expressions of z01 and z02 are shown in Appendix A.

4.1.2. First order approximation

The solution of Eq. (33) is

x0 ¼ aðT1;T2;yÞ cosfoT0 þ yðT1;T2;yÞg; ð36Þ

where a and y are the amplitude and phase of the solution. Substituting Eq. (36) into Eq. (34)
yields

D2
0x1 þ o2x1 ¼ R1ðT0Þ � z01; ð37Þ

where

R1ðT0Þ ¼ � sa cosðoT0 þ yÞ þ doa sinðoT0 þ yÞ þ f cosoT0

þ 2o sinðoT0 þ yÞD1a þ 2oa cosðoT0 þ yÞD1y: ð38Þ

To eliminate the terms that produce secular terms, we determine the components of cosoT0

and sinoT0 of the right-hand side of Eq. (37) and equate them to zero. The condition for the
component of cosoT0 to vanish is evaluated by

Z t0þ
2p
o

t0

fR1ðT0Þ � z01g cosoT0 dT0 ¼
X4
i¼1

Z ti

ti�1

fR1ðT0Þ � z01ig cosoT0 dT0; ð39Þ

where t4 ¼ t0 þ 2p=o:
To carry out the above integration, the times for each division point, t0;y; t3 are necessary.

From Eqs. (36), (22), (24) and (31), the displacements at each time are

xðt0Þ ¼ a þ OðeÞ; xðt1Þ ¼ 0þ OðeÞ;

xðt2Þ ¼ �a þ OðeÞ; xðt3Þ ¼ 0þ OðeÞ; ð40Þ

so that we approximately set t0;y; t3 as the following:

t0 ¼ �
y
o
; t1 ¼

p
2o

�
y
o
; t2 ¼

p
o
�

y
o
; t3 ¼

3p
2o

�
y
o
: ð41Þ
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Calculating Eq. (39) by using Eq. (41) yields

f � sa cos yþ
4Aga2 cos y

3p
þ
4Aba2 sin y

p
þ doa sin y

þ 2o sin yD1a þ 2oa cos yD1y ¼ 0; ð42Þ

where the relation u00 ¼ a derived from Eq. (40) was used.
Similarly, the condition for the coefficient of sinoT0 to vanish is

doa cos yþ
4Aba2 cos y

3p
þ sa sin y�

4Aga2 sin y
3p

þ 2o cos yD1a � 2oa sin yD1y ¼ 0: ð43Þ

Obtaining D1a and D1y by solving Eqs. (42) and (43) yields a system of first order differential
equations describing the modulation of the amplitude and phase of the response as follows:

’a ¼ eD1a ¼ �e
da

2
þ

f sin y
2o

þ
2a2Ab
3op

� �
; ð44Þ

’y ¼ eD1y ¼ e
s
2o

�
f cos y
2ao

�
2aAg
3op

� �
: ð45Þ

The amplitude and phase of the first order approximate solution correspond to the fixed point
of this system of differential equations. The stability of the solutions are determined by analyzing
the behavior of Eqs. (44) and (45) in the neighborhood of the fixed points.

4.1.3. Second order approximation

We next derive the second order approximate solution x0 þ ex1:
Substituting D1a and D1y described with Eqs. (44) and (45) into Eq. (37) and eliminating

secular terms yield

D2
0x1 þ o2x1 ¼ �

4Aga2 cosðoT0 þ yÞ
3p

�
4Aba2 sinðoT0 þ yÞ

3p
� z01: ð46Þ

Eq. (46) can be regarded as the undamped linear vibration equation with piecewise periodic
external force, since z01 on the right hand is defined in a piecewise manner. Although Eq. (46)
apparently has secular terms with frequency o; the terms are cancelled out by z01 of four intervals
as a whole. x1 can be obtained by solving Eq. (46) for each interval so that the constants of
integration satisfy the following conditions:

(1) The displacements and velocities of the four solutions are continuous,

x11ðt1Þ ¼ x12ðt1Þ; x12ðt2Þ ¼ x13ðt2Þ; x13ðt3Þ ¼ x14ðt3Þ; ð47Þ

’x11ðt1Þ ¼ ’x12ðt1Þ; ’x12ðt2Þ ¼ ’x13ðt2Þ; ’x13ðt3Þ ¼ ’x14ðt3Þ; ð48Þ

where x1i; i ¼ 1;y; 4; denote x1 in interval i:
(2) The components of frequency o in one period of x1 vanish, i.e.,Z t0þ2p=o

t0

x1 cosoT0 dT0 ¼ 0;

Z t0þ2p=o

t0

x1 sinoT0 dT0 ¼ 0: ð49Þ

Evaluating these conditions yields x1 as in Appendix B.
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We next derive a system of second order differential equations governing the amplitude and
phase of the response.
To eliminate the secular terms, substituting Eqs. (36), (44), (45) and (B.1)–(B.4) into Eq. (35)

and equating the coefficients of cosoT0 and sinoT0 zero yields

3a3Ab2 cos y
8

� dD1a cos y� D2
1a cos yþ aD1y

2 cos y�
a3Ag2 cos y

8

�
7a3A2b2 cos y

24o2
þ
5a3A2g2 cos y

24o2
þ 2aD2yo cos yþ

76a3A2b2 cos y
27o2p2

�
56a3A2g2 cos y

27o2p2
þ aD2

1y sin yþ adD1y sin yþ 2D1aD1y sin y

þ 2D2ao sin yþ
4aAbu01 sin y

p
¼ 0; ð50Þ

aD2
1y cos yþ adD1y cos yþ 2D1aD1y cos yþ 2D2ao cos yþ

4aAbu01 cos y
p

�
3a3Ab2 sin y

8
þ dD1a sin yþ D2

1a sin y� aD1y
2 sin yþ

a3Ag2 sin y
8

þ
7a3A2b2 sin y

24o2
�
5a3A2g2 sin y

24o2
� 2aD2yo sin y�

76a3A2b2 sin y
27o2p2

þ
56a3A2g2 sin y

27o2p2
¼ 0: ð51Þ

The expressions of D2
1a; D2

1y and u01 in these equations need to be evaluated. D2
1a and D2

1y are
obtained by differentiating D1a and D1y with T1 using Eqs. (44) and (45) and expressed as

D2
1a ¼

d2a
4

þ
8a3A2b2

9o2p2
þ

a2Abd
op

þ
aAf g cos y

3o2p

�
f s cos y
4o2

þ
f 2 cos y2

4ao2
þ

df sin y
4o

þ
2aAbf sin y

3o2p
; ð52Þ

D2
1y ¼

4a2A2bg
9o2p2

þ
aAdg
3op

�
df cos y
4ao

�
Abf cos y
3o2p

þ
f s sin y
4ao2

�
f 2 sin 2y
4a2o2

: ð53Þ

To obtain u01; xðt0Þ is calculated by using Eqs. (40), (41) and (B.1).

xðt0Þ ¼ x0ðt0Þ þ ex11ðt0Þ þ Oðe2Þ ¼ a � e
10� 3p
18o3p

a2Agþ Oðe2Þ:

Therefore,

u01 ¼ �
10� 3p
18o3p

a2Ag: ð54Þ

By solving D2a and D2y from Eqs. (50) and (51) using Eqs. (44), (45), (52), (53) and (54), a
system of second order differential equations describing the modulation of the amplitude a and
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phase y of the response is obtained as follows:

’a ¼ eD1a þ e2D2a

¼ � e
da

2
þ

f sin y
2o

þ
2a2Ab
3op

� �

þ e2
4a3A2bg
9o3p2

�
a3A2bg
3o3p

�
a2Adg
6o2p

þ
a2Abs
3o3p

�

þ
df cos y
8o2

�
aAbf cos y

6o3p
�

aAf g sin y
3o3p

þ
f s sin y
8o3

�
; ð55Þ

’y ¼ eD1yþ e2D2y

¼ e
s
2o

�
f cos y
2ao

�
2aAg
3op

� �

þ e2
7a2A2b2

48o3
�
5a2A2g2

48o3
�
3a2Ab2

16o
�

d2

8o
þ

a2Ag2

16o

�

�
26a2A2b2

27o3p2
þ
22a2A2g2

27o3p2
þ

aAbd
6o2p

þ
aAgs
3o3p

�
s2

8o3

�
Af g cos y
6o3p

þ
f s cos y
8ao3

�
df sin y
8ao2

þ
Abf sin y
3o3p

�
: ð56Þ

4.1.4. Stability analysis

The real parts of the eigenvalues of Jacobian matrix M1 about the steady state solution of
Eqs. (44) and (45) determine the stability of the first order approximate solution so that the
solution is stable if trðM1Þo0 and detðM1Þ > 0: Similarly, the stability of the second order
approximate solution can be determined by Eqs. (55) and (56). It is confirmed that saddle-node
bifurcation occurs in the primary resonance region as shown in Section 5.1.2.

4.2. Secondary resonance

Following almost the same procedure as for primary resonance, we obtain an approximate
symmetric solution and a system of differential equations describing the modulation of amplitude
of second order superharmonic component of the response.

4.2.1. Expansion of the equation of motion

For the case of secondary resonance, the displacement x and its maximum u0 and minimum u2
are expanded into the power series:

x ¼ x0 þ ex1 þ e2x2 þ?; ð57Þ

u0 ¼ u00 þ eu01 þ e2u02 þ?; ð58Þ
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u2 ¼ u20 þ eu21 þ e2u22 þ?; ð59Þ

where xi; u0i and u2i; i ¼ 0; 1; 2 are the terms of OðeiÞ:
We assume that damping coefficient is small and introduce a detuning parameter s: External

forcing is not assumed to be small for the case of secondary resonance.

%d ¼ ed; k þ A ¼ 4o2 þ es; %f ¼ f : ð60Þ

Substituting Eqs. (27), (28), (57)–(60) into Eq. (25) and equating coefficients of like powers of e;
we obtain

e0: D2
0x0 þ 4o2x0 ¼

A

2
ðu00 þ u20Þ þ f cosoT0; ð61Þ

e1: D2
0x1 þ 4o2x1 ¼

A

2
ðu01 þ u21Þ � sx0 � dD0x0 � 2D0D1x0 � z01; ð62Þ

e2: D2
0x2 þ 4o2x2 ¼

A

2
ðu02 þ u22Þ � sx1 � D2

1x0 � dðD1x0 þ D0x1Þ � 2D0D2x0

� 2D0D1x1 � z02; ð63Þ

where z01 and z02 denote the coefficients of order e and e2; respectively, in the expression of z which
is obtained by substituting Eqs. (57)–(59) into Eq. (25) and re-expanding z to the power series of e:
The expressions of z01 and z02 are shown in Appendix C.

4.2.2. First order approximation

The solution of Eq. (61) is

x0 ¼ a cos 2oT0 þ b sin 2oT0 þ
f cosoT0

3o2
þ

A

8o2
ðu00 þ u20Þ; ð64Þ

where a and b are the amplitudes of the superharmonic component with frequency 2o:
Hereafter, we consider the case that the solution is almost symmetric so that aEbE0 and

u00 þ u20E0: Then the times for each division point are approximated as the following:

t0 ¼ 0; t1 ¼
p
2o

; t2 ¼
p
o
; t3 ¼

3p
2o

: ð65Þ

It is noted that Eq. (65) do not include arbitrary phase as opposed to Eq. (41) for primary
resonance because the zeroth order solution (36) for primary resonance corresponds to free
vibration while Eq. (64) is the response of forced vibration without damping.
By solving u00 ¼ x0ðt0Þ and u20 ¼ x0ðt2Þ; u00 and u20 are obtained as

u00 ¼
%f

3o2
�

4o2a

A � 4o2
; ð66Þ

u20 ¼ �
%f

3o2
�

4o2a

A � 4o2
: ð67Þ

Substituting Eqs. (66) and (67) into Eq. (64) yields the first order approximate solution,

x0 ¼ a cos 2oT0 þ b sin 2oT0 þ
%f cosoT0

3o2
�

Aa

A � 4o2
: ð68Þ
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Substituting Eq. (64) into Eq. (62) and eliminating the coefficients of cos 2oT0 and sin 2oT0

yield a system of differential equations describing the modulation of amplitudes of superharmonic
component of the response for the first order approximation:

’a ¼ eD1a ¼ �e
da

2
�

sb

4o
þ
8Ab %fa
45o3p

þ
8Ag %fb
45o3p

� �
; ð69Þ

’b ¼ eD1b ¼ �e
db

2
þ

sa

4o
þ
2Ab %fb
45o3p

�
2A %fga

45o3p

� �
: ð70Þ

4.2.3. Second order approximation
Substituting Eqs. (66)–(70) into Eq. (62) yields

D2
0x1 þ 4o2x1 ¼ �

%fs
3o2

cosoT0 þ
d %f
3o

sinoT0 þ
Asa

A � 4o2
þ

8A %f

45o2p
ðbb � gaÞ cos 2oT0

�
32A %f

45o2p
ðba þ gbÞ sin 2oT0 þ

A

2
ðu01 þ u21Þ � z01: ð71Þ

x1 can be obtained in the piecewise manner using the same procedure as described in Section 4.1.3.
Moreover, by solving the following two equations, u01 and u21 are obtained:

u01 ¼ x11ðt0Þ; u21 ¼ x13ðt2Þ; ð72Þ

where x11ðt0Þ and x13ðt2Þ are the functions of u01 and u21: It is noted that the times for each division
point, t0;y; t3; Eq. (65) are used in the above procedure.
Substitute x11;y;x14 obtained above into Eq. (35) and evaluate the condition to make the

secular terms vanish. By solving D2a;D2b from the condition and using Eqs. (69) and (70), a
system of differential equations governing the amplitudes of second order superharmonic
component of the response for the second order approximation are derived as follows:

’a ¼ � e
da

2
�

sb

4o
þ
8Ab %fa
45o3p

þ
8Ag %fb
45o3p

� �

þ e2
�67A2b %f 2ga

6075o7p2
þ
13A2b %f 2ga

1620o7p
�

Ab %f 2ga
54o5p

þ
4Ad %fga
45o4p

þ
79Ab %fsa

1080o5p

�

�
A2bga3

3o3p
þ
2Abga3

3op
þ
17A2b2 %f 2b
8640o7

�
11A2 %f 2g2b
2880o7

�
Ab2 %f 2b
144o5

þ
A %f 2g2b
144o5

�
d2b
16o

þ
193A2b2 %f 2b
10125o7p2

þ
244A2 %f 2g2b
30375o7p2

þ
8Abd %fb
135o4p

þ
79A %fgsb

1080o5p
�

s2b
64o3

�
35A2b2a2b
384o3

�
35A2g2a2b
384o3

þ
5Ab2a2b
32o

þ
5Ag2a2b
32o

�
A2bgab2

3o3p

þ
2Abgab2

3op
�
5A2b2b3

384o3
�
5A2g2b3

384o3
þ

Ab2b3

32o
þ

Ag2b3

32o

�
; ð73Þ
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’b ¼ � e
db

2
þ

sa

4o
þ
2Ab %fb
45o3p

�
2A %fga

45o3p

� �

þ e2
�253A2b2 %f 2a
34560o7

�
31A2 %f 2g2a
11520o7

þ
Ab2 %f 2a
72o5

þ
d2a
16o

þ
796A2b2 %f 2a
30375o7p2

�

þ
29A2 %f 2g2a
3375o7p2

þ
4A2 %f 2g2a
405o7p

�
4Abd %fa
45o4p

�
31A %fgsa

1080o5p
þ

s2a
64o3

þ
35A2b2a3

384o3

�
13A2g2a3

384o3
�
5Ab2a3

32o
�
5Ag2a3

32o
þ
107A2b %f 2gb

6075o7p2
�
17A2b %f 2gb
1620o7p

þ
Ab %f 2gb

54o5p
�
2Ad %fgb

135o4p
þ
31Ab %fsb

1080o5p
þ

A2bga2b

6o3p
�
2Abga2b
3op

þ
5A2b2ab2

384o3

þ
5A2g2ab2

384o3
�

Ab2ab2

32o
�

Ag2ab2

32o

�
: ð74Þ

It is noted that Eqs. (69) and (70) for the first order approximation and Eqs. (73) and (74) for
the second order approximation have trivial steady state solution, ða; bÞ ¼ ð0; 0Þ; which
corresponds to symmetric solutions. By substituting the solution ða; bÞ ¼ ð0; 0Þ into Eq. (68) and
x11;y;x14; the second order symmetric approximate solution is obtained as Appendix D.

4.2.4. Stability analysis
In the above analysis, the instability of the trivial solution ða; bÞ ¼ ð0; 0Þ corresponds to the

divergence of a non-symmetric solution. We next evaluate the unstable parameter regions of the
trivial solution for the first order and the second order approximation.
Jacobian matrix M1 about the steady state solution ða; bÞ ¼ ð0; 0Þ of Eqs. (69) and (70) is derived as

M1 ¼ e
�
d
2
�

8Ab %f
45o3p

s
4o

�
8Ag %f
45o3p

�
s
4o

þ
2Ag %f
45o3p

�
d
2
�

2Ab %f
45o3p

0
BB@

1
CCA: ð75Þ

Since trðM1Þo0; detðM1Þ ¼ 0 gives the stability limit outside which the symmetric solution becomes
unstable. It can be confirmed that the equilibrium point ða; bÞ ¼ ð0; 0Þ changes from stable node to
saddle point by crossing the limit for the first order approximation. By arranging detðM1Þ > 0; the
condition that the symmetric solution becomes unstable and non-symmetric solution diverges when
%d ¼ 0 can be derived as the next inequality:

4 %bo3j%gj: ð76Þ

Similarly, for the second order approximation, the stability limit outside which the non-symmetric
solution diverges is given by detðM2Þ ¼ 0 and trðM2Þo0; where M2 is Jacobian matrix of steady state
solution ða; bÞ ¼ ð0; 0Þ: We can confirm that this condition corresponds to pitchfork bifurcation
[19,20] for the second order approximation.
Although there exists the possibility of another bifurcation when trðM2Þ ¼ 0; detðM2Þ > 0; it is

beyond the scope of this paper.
Tedious computations required in this section were performed by using Mathematica [23].
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5. Comparison with numerical integration

In order to examine the validity of the present analysis, we carry out the numerical integration
of Eq. (3) and compare the results with those of the multiple time scale analysis. We set A ¼ 0:95
and k ¼ 0:05 to consider the case that the hysteretic restoring force is predominant over the linear
one, and set the damping coefficient %d ¼ 0:1 and the amplitude of excitation %f ¼ 0:5 for the weak

damping and excitation. The linear natural frequency of the system is
ffiffiffiffiffiffiffiffiffiffiffiffi
k þ A

p
¼ 1:0:

5.1. Primary resonance

5.1.1. Phase plane trajectories
Fig. 2 shows the phase plane trajectories, where (a) and (b) are for the case of softening

hysteresis, while (c) and (d) are for the case of hardening hysteresis. The solid and dashed lines
represent, respectively, the second order and the first order approximate solutions obtained by
multiple time scale analysis. The dotted lines represent the numerical solutions of Eq. (3) obtained
by shooting method [24].
The orbits of analytical solutions and numerical solutions are in similar tendency. A good

agreement is found between the second order approximate solutions and the numerical ones.
Although the second order approximate solutions are given in the piecewise manner, the phase
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Fig. 2. Phase plane trajectories: (a) %b ¼ 0:1; %g ¼ 0:5; o ¼ 0:8 (softening); (b) %b ¼ 0:3; %g ¼ 0:3; o ¼ 0:8 (softening);

(c) %b ¼ 0:1; %g ¼ �0:5; o ¼ 1:25 (hardening); (d) %b ¼ 0:3; %g ¼ �0:5; o ¼ 1:15 (hardening). In all cases, A ¼ 0:95;
k ¼ 0:05; %d ¼ 0:1 and %f ¼ 0:5: ———, MS second order; — — —, MS first order; - - - -, numerical.

N. Okuizumi, K. Kimura / Journal of Sound and Vibration 272 (2004) 675–701 689



plane trajectories are continuous and smooth. This is because the piecewise expression for
hysteretic restoring force is continuous at the times for each division point.

5.1.2. Resonance curves

Figs. 3 and 4 show the resonance curves of the softening and hardening hysteretic systems,
respectively, for several values of %b and %g: The solid and dashed lines represent the results of the
second order and the first order approximation, respectively, and the dotted lines represent those
of numerical integration. The resonance curves obtained from the first and second order multiple
time scale analyses are similar to the curves of numerical integration. It is noted that the second
order approximate solutions show better agreement with the numerical integration than the first
order ones.

5.2. Secondary resonance

5.2.1. Phase plane trajectories
Fig. 5 shows the phase plane trajectories of the second order approximate solution and the

numerical integration for four parameter choices. The theoretical results are calculated by
Eqs. (D.1)–(D.5), while the numerical results are calculated by numerical integration of Eq. (3).
Figs. 5(a) and (b) are for the case of softening hysteresis, while Figs. 5(c) and (d) are for the case

of hardening hysteresis. The solid lines represent the second order approximate solutions and the
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Fig. 3. Resonance curves for softening systems; (a) %b ¼ 0:1; %g ¼ 0:1; (b) %b ¼ 0:1; %g ¼ 0:5; (c) %b ¼ 0:3; %g ¼ �0:1;
(d) %b ¼ 0:3; %g ¼ 0:3: In all cases, A ¼ 0:95; k ¼ 0:05; %d ¼ 0:1 and %f ¼ 0:5: ———, MS second order; — — —, MS first

order; - - - -, numerical.
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Fig. 4. Resonance curves for hardening systems; (a) %b ¼ 0:1; %g ¼ �0:1; (b) %b ¼ 0:1; %g ¼ �0:5; (c) %b ¼ 0:3; %g ¼ �0:3;
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Fig. 5. Phase plane trajectories: (a) %b ¼ 0:1; %g ¼ 0:3 (softening); (b) %b ¼ 0:3; %g ¼ 0:5 (softening); (c) %b ¼ 0:1; %g ¼ �0:3
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dashed lines represent the orbits of numerical integration. A fairly good agreement is found in
both the results.

5.2.2. Divergence of non-symmetric solution

The resonance curve of a softening hysteretic system obtained by numerical integration of
Eq. (3) is shown in Fig. 6 in order to explain how the symmetric solution bifurcates to non-
symmetric solutions. Point P corresponds to the primary resonance and points Q and R
correspond to the secondary resonance. Periodic solutions and hysteretic loops at the points P, Q
and R are computed by the shooting method and are shown in Figs. 7(a), (b) and (c), respectively.
While symmetric solution (Fig. 7(a)) is stable in the primary resonance region, symmetric solution
(Fig. 7(b)) becomes unstable and stable non-symmetric solution (Fig. 7(c)) diverges in the
secondary resonance region. The bifurcation diagram for the same hysteretic system is shown in
Fig. 8. As o increases or decreases, one symmetric solution becomes unstable and bifurcates to
two non-symmetric solutions. The divergence of non-symmetric solution corresponds to pitchfork
bifurcation, which qualitatively agrees with the stability analysis described in Section 4.2.4.

5.2.3. Unstable region of symmetric solution

Figs. 9 and 10 show the unstable regions of symmetric solutions for softening and hardening
hysteretic systems, respectively. In each figure, %b and %g are selected to satisfy condition (76). The
solid and dashed lines represent the results of the second order and the first order approximation,
respectively, and the dotted line represents the results of the numerical integration.
The unstable regions of symmetric solution diverge from point ð f ;oÞ ¼ ð0;

ffiffiffiffiffiffiffiffiffiffiffiffi
k þ A

p
=2Þ and

spread over to upper left regions in softening systems (Fig. 9(a)) and upper right regions in
hardening systems (Fig. 10(a)). The regions become larger as non-linearity increases (Figs. 9(b)
and 10(b)) and move up as damping coefficient d increases (Figs. 9(c) and 10(c)).
The results of the first and second order approximations are qualitatively similar to those of

numerical integration for all cases. Moreover, the second order approximate results are
quantitatively closer to a numerical one than the first order results.
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6. Conclusions

A smooth hysteretic system subjected to harmonic excitation was analyzed. As a model for
hysteresis, Wen’s differential equation, which governs hysteretic restoring force by differential
equation, was used. To apply the method of multiple time scales, the piecewise power series
expression for hysteretic restoring force was proposed under the assumption that the non-linearity
of the restoring force is weak and the force–displacement curve draws a single loop.
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Fig. 7. Phase plane trajectories and hysteretic loops: (a) Stable symmetric solution (point P, o ¼ 0:7); (b) Unstable
symmetric solution (point Q, o ¼ 0:46); (c) Stable non-symmetric solution (point R, o ¼ 0:46). In all cases, %b ¼ 0:1;
%g ¼ 0:5; A ¼ 0:95; k ¼ 0:05; %d ¼ 0 and %f ¼ 0:5:
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By using the piecewise power series expression and the method of multiple time scales, the first
and second order approximate solutions and the systems of differential equations describing the
modulation of the amplitudes and phases of the solutions were obtained for the cases of primary
and secondary resonance. Stability analysis for the solutions of the secondary resonance was also
performed and the unstable regions of symmetric solutions were determined.
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Phase plane trajectories, resonance curves and the unstable regions of symmetric solutions
obtained from the analyses were compared with the results of numerical integration and the
validity of the present method was confirmed.
The proposed method can be applied to a large class of hysteretic systems. Extending the

method to the case of non-symmetric solution is the subject of further study in the future.

ARTICLE IN PRESS

0

0.2

0.4

0.6

0.8

1

0.5 0.51 0.52 0.53 0.54 0.55 0.56

f

ω(a)

0

0.2

0.4

0.6

0.8

1

0.5 0.52 0.54 0.56 0.58 0.6

f

ω(b)

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.52 0.54 0.56 0.58 0.6

f

ω(c)

Fig. 10. Unstable regions of symmetric solutions for hardening systems: (a) %b ¼ 0:1; %g ¼ �0:3; %d ¼ 0; (b) %b ¼ 0:1;
%g ¼ �0:5; %d ¼ 0; (c) %b ¼ 0:1; %g ¼ �0:5; %d ¼ 0:05: In all cases, A ¼ 0:95 and k ¼ 0:05: ———, MS second order; – – – –,

MS first order; 
 
 
 
 
; numerical.

N. Okuizumi, K. Kimura / Journal of Sound and Vibration 272 (2004) 675–701 695



Appendix A

The expressions of z011;y; z024 for the case of primary resonance are as follows:

z011 ¼
A

2
fðb� gÞx2

0 � bu200g; ðA:1Þ

z012 ¼
A

2
fðbþ gÞx2

0 � bu200g; ðA:2Þ

z013 ¼ �
A

2
fðb� gÞx2

0 � bu200g; ðA:3Þ

z014 ¼ �
A

2
fðbþ gÞx2

0 � bu200g; ðA:4Þ

z021 ¼
A

6
fðb� gÞ2x3

0 � 3bðb� gÞu200x0 þ 6ðb� gÞx0x1 � bgu300 � 6bu00u01g; ðA:5Þ

z022 ¼
A

6
fðbþ gÞ2x3

0 � 3bðbþ gÞu200x0 þ 6ðbþ gÞx0x1 � bgu300 � 6bu00u01g; ðA:6Þ

z023 ¼
A

6
fðb� gÞ2x3

0 � 3bðb� gÞu200x0 � 6ðb� gÞx0x1 þ bgu300 þ 6bu00u01g; ðA:7Þ

z024 ¼
A

6
fðbþ gÞ2x3

0 � 3bðbþ gÞu200x0 � 6ðbþ gÞx0x1 þ bgu300 þ 6bu00u01g: ðA:8Þ

Appendix B

The expressions of x11;y;x14 for the case of primary resonance are as follows:

x11ðT0Þ ¼
a2Ab
4o2

þ
a2Ag
4o2

�
a2Ab cosðoT0 þ yÞ

3o2
�
5a2Ag cosðoT0 þ yÞ

9o2p

þ
2a2AbðoT0 þ yÞ cosðoT0 þ yÞ

3o2p
þ

a2Ab cos 2ðoT0 þ yÞ
12o2

�
a2Ag cos 2ðoT0 þ yÞ

12o2
�
5a2Ab sinðoT0 þ yÞ

9o2p

�
2a2AgðoT0 þ yÞ sinðoT0 þ yÞ

3o2p
; ðB:1Þ
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x12ðT0Þ ¼
a2Ab
4o2

�
a2Ag
4o2

�
a2Ab cosðoT0 þ yÞ

3o2
�
5a2Ag cosðoT0 þ yÞ

9o2p

þ
2a2AbðoT0 þ yÞ cosðoT0 þ yÞ

3o2p
þ

a2Ab cos 2ðoT0 þ yÞ
12o2

þ
a2Ag cos 2ðoT0 þ yÞ

12o2
þ
2a2Ag sinðoT0 þ yÞ

3o2

�
5a2Ab sinðoT0 þ yÞ

9o2p
�
2a2AgðoT0 þ yÞ sinðoT0 þ yÞ

3o2p
; ðB:2Þ

x13ðT0Þ ¼ �
a2Ab
4o2

�
a2Ag
4o2

�
a2Ab cosðoT0 þ yÞ

o2
�
5a2Ag cosðoT0 þ yÞ

9o2p

þ
2a2AbðoT0 þ yÞ cosðoT0 þ yÞ

3o2p
�

a2Ab cos 2ðoT0 þ yÞ
12o2

þ
a2Ag cos 2ðoT0 þ yÞ

12o2
þ
2a2Ag sinðoT0 þ yÞ

3o2
�
5a2Ab sinðoT0 þ yÞ

9o2p

�
2a2AgðoT0 þ yÞ sinðoT0 þ yÞ

3o2p
; ðB:3Þ

x14ðT0Þ ¼ �
a2Ab
4o2

þ
a2Ag
4o2

�
a2Ab cosðoT0 þ yÞ

o2
�
5a2Ag cosðoT0 þ yÞ

9o2p

þ
2a2AbðoT0 þ yÞ cosðoT0 þ yÞ

3o2p
�

a2Ab cos 2ðoT0 þ yÞ
12o2

�
a2Ag cos 2ðoT0 þ yÞ

12o2
þ
4a2Ag sinðoT0 þ yÞ

3o2

�
5a2Ab sinðoT0 þ yÞ

9o2p
�
2a2AgðoT0 þ yÞ sinðoT0 þ yÞ

3o2p
: ðB:4Þ

Appendix C

The expressions of z011;y; z024 for the case of secondary resonance are the following:

z011 ¼
A

8
f�bðu00 � u20Þ

2 þ ðb� gÞðu00 þ u20Þ
2 � 4ðb� gÞðu00 þ u20Þx0 þ 4ðb� gÞx2

0g

�
A

2
ðu01 þ u21Þ; ðC:1Þ

z012 ¼
A

8
f�bðu00 � u20Þ

2 þ ðbþ gÞðu00 þ u20Þ
2 � 4ðbþ gÞðu00 þ u20Þx0 þ 4ðbþ gÞx2

0g

�
A

2
ðu01 þ u21Þ; ðC:2Þ
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z013 ¼
A

8
fbðu00 � u20Þ

2 � ðb� gÞðu00 þ u20Þ
2 þ 4ðb� gÞðu00 þ u20Þx0 � 4ðb� gÞx2

0g

�
A

2
ðu01 þ u21Þ; ðC:3Þ

z014 ¼
A

8
ðbðu00 � u20Þ

2 � ðbþ gÞðu00 þ u20Þ
2 þ 4ðbþ gÞðu00 þ u20Þx0 � 4ðbþ gÞx2

0g

�
A

2
ðu01 þ u21Þ; ðC:4Þ

z021 ¼
A

48
f�8bgu300 � 12b2u00u20ðu00 þ u20Þ þ 6bgu00ðu00 þ u20Þ

2 þ ð2b2 � g2Þðu00 þ u20Þ
3g

�
A

8
ðb� gÞfbðu00 � u20Þ

2 � ðb� gÞðu00 þ u20Þ
2gx0

�
A

4
ðb� gÞ2ðu00 þ u20Þx2

0 þ
A

6
ðb� gÞ2x3

0

þ
A

8
½�2bðu00 � u20Þðu01 � u21Þ þ 2ðb� gÞðu00 þ u20Þðu01 þ u21Þ

þ 8ðb� gÞx0x1 � 4ðb� gÞfðu01 þ u21Þx0 þ ðu00 þ u20Þx1g�

�
A

2
ðu02 þ u22Þ; ðC:5Þ

z022 ¼
A

48
f8bgu320 � 12b2u00u20ðu00 þ u20Þ � 6bgu20ðu00 þ u20Þ

2 þ ð2b2 � g2Þðu00 þ u20Þ
3g

�
A

8
ðbþ gÞfbðu00 � u20Þ

2 � ðbþ gÞðu00 þ u20Þ
2gx0

�
A

4
ðbþ gÞ2ðu00 þ u20Þx2

0 þ
A

6
ðbþ gÞ2x3

0

þ
A

8
½�2bðu00 � u20Þðu01 � u21Þ þ 2ðbþ gÞðu00 þ u20Þðu01 þ u21Þ

þ 8ðbþ gÞx0x1 � 4ðbþ gÞfðu01 þ u21Þx0 þ ðu00 þ u20Þx1g�

�
A

2
ðu02 þ u22Þ; ðC:6Þ

z023 ¼
A

48
f�8bgu320 � 12b2u00u20ðu00 þ u20Þ þ 6bgu20ðu00 þ u20Þ

2 þ ð2b2 � g2Þðu00 þ u20Þ
3g

�
A

8
ðb� gÞfbðu00 � u20Þ

2 � ðb� gÞðu00 þ u20Þ
2gx0

�
A

4
ðb� gÞ2ðu00 þ u20Þx2

0 þ
A

6
ðb� gÞ2x3

0
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þ
A

8
½2bðu00 � u20Þðu01 � u21Þ � 2ðb� gÞðu00 þ u20Þðu01 þ u21Þ

� 8ðb� gÞx0x1 þ 4ðb� gÞfðu01 þ u21Þx0 þ ðu00 þ u20Þx1g�

�
A

2
ðu02 þ u22Þ; ðC:7Þ

z024 ¼
A

48
f8bgu300 � 12b2u00u20ðu00 þ u20Þ � 6bgu00ðu00 þ u20Þ

2 þ ð2b2 � g2Þðu00 þ u20Þ
3g

�
A

8
ðbþ gÞfbðu00 � u20Þ

2 � ðbþ gÞðu00 þ u20Þ
2gx0

�
A

4
ðbþ gÞ2ðu00 þ u20Þx2

0 þ
A

6
ðbþ gÞ2x3

0

þ
A

8
½2bðu00 � u20Þðu01 � u21Þ � 2ðbþ gÞðu00 þ u20Þðu01 þ u21Þ

� 8ðbþ gÞx0x1 þ 4ðbþ gÞfðu01 þ u21Þx0 þ ðu00 þ u20Þx1g�

�
A

2
ðu02 þ u22Þ: ðC:8Þ

Appendix D

The second order symmetric approximate solution for the case of secondary resonance is
expressed as follows:

x0 ¼
%f

3o2
cosot; ðD:1Þ

x11 ¼
A2b %f 2

144o6ðA � 4o2Þ
þ

A2 %f 2g
144o6ðA � 4o2Þ

�
Ab %f 2

36o4ðA � 4o2Þ

�
A %f 2g

36o4ðA � 4o2Þ
�

%fs cosot

9o4
�

Ab %f 2 cos 2ot

144o6
þ

A %f 2g cos 2ot

144o6

þ
d %f sinot

9o3
þ

Ab %f 2p sin 2ot

288o6
�

Ab %f 2t sin 2ot

144o5
þ

A %f 2gt sin 2ot

144o5
; ðD:2Þ

x12 ¼
A2b %f 2

144o6ðA � 4o2Þ
þ

A %f 2g
36o4ðA � 4o2Þ

�
A2 %f 2g

144o6ðA � 4o2Þ

�
Ab %f 2

36o4ðA � 4o2Þ
�

%fs cosot

9o4
�

Ab %f 2 cos 2ot

144o6
�

A %f 2g cos 2ot

144o6

þ
d %f sinot

9o3
þ

Ab %f 2p sin 2ot

288o6
þ

A %f 2gp sin 2ot

144o6
�

Ab %f 2t sin 2ot

144o5

�
A %f 2gt sin 2ot

144o5
; ðD:3Þ
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x13 ¼
Ab %f 2

36o4ðA � 4o2Þ
þ

A %f 2g
36o4ðA � 4o2Þ

�
A2b %f 2

144o6ðA � 4o2Þ

�
A2 %f 2g

144o6ðA � 4o2Þ
�

%fs cosot

9o4
þ

Ab %f 2 cos 2ot

144o6

�
A %f 2g cos 2ot

144o6
þ

d %f sinot

9o3
�

Ab %f 2p sin 2ot

96o6
þ

A %f 2gp sin 2ot

144o6

þ
Ab %f 2t sin 2ot

144o5
�

A %f 2gt sin 2ot

144o5
; ðD:4Þ

x14 ¼
A2 %f 2g

144o6ðA � 4o2Þ
þ

Ab %f 2

36o4ðA � 4o2Þ
�

A2b %f 2

144o6ðA � 4o2Þ

�
A %f 2g

36o4ðA � 4o2Þ
�

%fs cosot

9o4
þ

Ab %f 2 cos 2ot

144o6
þ

A %f 2g cos 2ot

144o6

þ
d %f sinot

9o3
�

Ab %f 2p sin 2ot

96o6
�

A %f 2gp sin 2ot

72o6
þ

Ab %f 2t sin 2ot

144o5

þ
A %f 2gt sin 2ot

144o5
: ðD:5Þ
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