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Abstract

Dynamic behavior of smooth hysteretic systems subjected to harmonic excitation is analyzed. Wen’s
differential equation model for hysteresis, which can be applied to a large class of hysteretic systems, is
used. A piecewise power series expression for hysteretic restoring force is derived from Wen’s model
assuming that steady state force—displacement curve draws a single loop and that the non-linearity of
the restoring force is weak. The method of multiple scales is applied to the equation of motion by using the
piecewise power series expression for the cases of primary and secondary resonance to derive the
approximate solutions and the differential equations governing the amplitude and phase of the solutions.
Phase plane trajectories, resonance curves and stability limit of the solutions are obtained and compared
with the results of numerical integration in order to examine the validity of the present analysis.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Many mechanical and structural systems subjected to severe dynamic loads exhibit hysteretic
behavior. In such systems, the restoring force depends on their past histories and the force—
displacement relationships are not single-valued and draw hysteretic loops. Due to this nature,
hysteretic systems may display complex dynamic behavior and have energy dissipation properties.
Investigating the vibration characteristics of hysteretic systems is important for the reliability and
safety of mechanical and structural systems.
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Recently, bifurcation and chaos in non-linear vibrating systems have drawn much attention.
They have been extensively investigated by using various analytical methods and a vast amount of
knowledge has been obtained for elastic systems. However, these phenomena of hysteretic systems
have not been studied as much as elastic systems in spite of their importance.

This is mainly because the restoring force has a multi-valued nature so that approximate
analytical techniques, which are useful for non-linear elastic systems, cannot be applied directly to
hysteretic systems except for the first order averaging method. Most of the studies from the
viewpoint of non-linear dynamics have been restricted for the case of specific external forcing or
specific softening or hardening systems [1-3].

In the former studies of non-linear vibration of hysteretic systems, Caughey applied the method
of slowly varying parameters, i.c., the first order averaging method to a single-degree-of-freedom
(s.d.o.f.) bilinear hysteretic system subjected to harmonic excitation and obtained the approximate
solution and its stability [4]. His method has been frequently used for various hysteretic systems
under harmonic excitations, such as s.d.o.f. smooth softening systems [5,6], piecewise-linear
systems [6—8], degrading piecewise-linear systems [6,9], degrading smooth softening system [6],
two-d.o.f. bilinear system [10], double pendulum with bilinear hysteretic damping [11] and so on.
Caughey’s method is useful for obtaining the first order approximate solutions for the case of
primary resonance while his method cannot be readily applicable to the higher order solutions.
Concerning higher order approximate analysis, numerical procedures based on the method of
harmonic balance [12] were employed for smooth hysteretic systems [2,13]. The method of
multiple time scales [14] and higher order averaging method [15], which are useful for stability and
bifurcation analyses of weakly non-linear elastic systems, have seldom been applied to hysteretic
systems.

From the viewpoint of non-linear dynamical system, Poddar et al. [16] investigated the
vibrations of an elasto-plastic beam, the Shanley model, under periodic impulse forcing and
numerically confirmed the existence of chaotic motion. Pratap et al. [17,18] analyzed the free and
forced oscillations of a bilinear hysteretic system, which was a simplification of the Shanley model,
under parametric periodic impulse forcing. They revealed that there exist numerous bifurcations
from quasi-periodic motion to chaos-like motion. Pratap and Holmes [1] studied the behavior of a
piecewise linear map which describes the motion of the same bilinear oscillator under parametric
impulse forcing and proved that chaotic motion in the form of a Smale horseshoe [19,20] exists.
Capecchi et al. [9] showed the existence of not only jump phenomena but also Hopf bifurcation
[19,20] in a degrading piecewise linear hysteretic system by applying Caughey’s method. He also
applied a numerical procedure based on the method of harmonic balance to a smooth softening
degrading hysteretic system and showed that the periodic solution became unstable via Hopf
bifurcation and suggested that chaotic motion might appear [2]. Yang et al. [3] investigated a
smooth hysteretic system using a model of Baber and Wen [21] by numerical integration and
demonstrated the occurrence of the chaotic vibration for the case of hardening hysteretic system
under cyclic loading of large amplitude.

In this paper, we investigate smooth hysteretic systems by using the method of multiple time
scales for the cases of primary and secondary resonance. Wen’s differential equation model [22],
which can describe a large class of hysteretic systems is used. In order to apply the method of
multiple time scales, a piecewise power series expression for hysteretic restoring force is proposed.
By using this expression, the method of multiple time scales is applied up to the second order and
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the symmetric approximate solutions and differential equations describing the modulations of the
amplitudes of the solutions are obtained. For the case of primary resonance, phase plane
trajectories and resonance curves of the solutions are obtained. For the case of secondary
resonance, the phase plane trajectories and unstable regions of symmetric solutions are obtained.
It is shown that the symmetric solutions become unstable and non-symmetric solutions diverge in
the secondary resonance region via pitchfork bifurcation [19,20]. Analytical results are compared
with the results of numerical integration of Wen’s model in order to determine the validity of the
present analysis.

2. Model for hysteresis

The equation of motion for a s.d.o.f. hysteretic system subjected to harmonic excitation is of the
form

X 4 0x + kx 4 z = fcos wt, (1)

where x is the displacement, z is the hysteretic restoring force, J is the damping coefficient, k is the
linear stiffness coefficient, f and w are the amplitude and frequency of external forcing,
respectively. Using Wen’s differential equation [22], a model for hysteretic restoring force can be
constructed by requiring x and z to satisfy the following differential equation:

2= Ax — (Bl 2 + 3z, (2)

where A4, f and 7 are the parameters to control the scale and general shape of the hysteretic loop,
while n controls the smoothness of the loop. By adjusting the values of f and 7, a wide variety of
smooth restoring forces, such as softening or hardening, narrow or wide loops is described.
Depending on whether 4 7 is positive or not, this system exhibits softening or hardening
hysteretic characteristics, respectively. As f3 increases, the width of the hysteretic loop, i.e., the
dissipation energy due to hysteresis becomes large.

In this paper, we set # = 1 and consider the case of exponential hysteretic restoring force. Then
the equations of motion for the present hysteretic system are the following system of differential
equations:

%+ 6x 4 kx + z = fcos wt,
2= Ax — (BIx|z + 7%z]). (3)

3. The piecewise power series expression for hysteretic restoring force

Equations of motion (3) for the present system have three state variables: x,x and z. The
restoring force z is not expressed by the polynomial of the displacement x. Therefore typical
approximate analytical methods to non-linear vibrating systems, such as the averaging method or
the method of multiple time scales, cannot be applied directly to Eq. (3). In order to use these
methods, the piecewise power series expression for hysteretic restoring force is proposed.
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3.1. Division of hysteretic loop

As shown in Fig. 1(a), we assume that force—displacement curve draws a single loop in
stationary state. The case of double loops (Fig. 1(b)) or more is beyond the scope of this paper.
Depending on the signs of velocity x and hysteretic restoring force z, the hysteretic loop can be
divided into four intervals. In each interval, Eq. (3) is integrated and z is described by the
following equations.

Interval(i): x<0, z=0

A — Ble(ﬁ_i_')x —
a2 — 7£0),
L T =720 W
Ax + Dy B—7=0).
Interval(ii): x<0, z<0
A — BoelPx
—_—— +7#0),
. T B0 “
Ax + D, B+7=0).
Interval(iii): x>0, z<0
A — B;e_(ﬁ_ﬂx _
————— (B —7#0),
z= p—7 (6)
Ax + Dy (5—77:0)
Interval(iv): x>0, z=0
A — Bye~Pnx
————— (B+7#0),
z= B+7 (7)
Ax + Dy B+7=0),

where B; and D; are the constants of integration. Hysteretic restoring force z can be expressed in
terms of the exponential functions of displacement x when f+7#0.

(b)
Fig. 1. Division of hysteretic loop: (a) single loop; (b) double loop.
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3.2. The piecewise power series expression

We assume that the non-linearity of the restoring force is weak. Introducing small positive
scaling parameter ¢, the parameters f and 7 which control non-linearity of hysteretic loop are
replaced by ¢f and &y, respectively. Let 1, ..., #3 denote the time for each division point and let
up, ...,u3 denote the displacements at those points as shown in Fig. 1(a). For the hysteretic
restoring force z to be continuous, the following conditions should be satisfied:

(1) When ¢t = ¢ty and x = up, z(i) = z(iv):
A — Bjetf—muw 4 — Bye—th+uo

+ =0. (8)
e(f—7) e(B+7)
(2) When ¢t = t; and x = uy, z(1) = z(ii) = 0:
A— Bl =0, 4 — Bt =0, 9)
(3) When ¢t = t;, and x = uy, z(ii) = z(iii):
A — Bt 4 _ B.e—eB—1uw
2¢ 3 —0. (10)

s A

(4) When ¢t = t3 and x = u3, z(iii) = z(iv) = 0:
A — Bye P — 0 4 — Byt — ), (11)
In these equations, z(i) to z(iv) denote z of intervals (i) to (iv), respectively.

By expanding By, ..., B4 and the exponential functions in Eqgs. (8)—(11) into power series of &
and equating coefficients of &, ¢! and ¢?, hysteretic restoring force is denoted by

o A<x _Ho ; ”2) F ez + 20+ O, (12)

where z; and z, are the coefficients of order ¢ and &, respectively. Let z; and z, in intervals
(1), ...,(v) be zy1, ..., z14 and z»y, ..., z24, respectively. Their expressions are as follows:

S =B~ D+ ) — Bl — e — 4~ e i HAB -, ()
fin = B + )+ ) — g~ — 4+ e+ e 4B L, ()
i = = (B = D+ ) — Bl — ) — 4~ Do x4 - (19)

fla= 5 B+ )+ ) — Bl — ) — 4+ Do w4, (16)
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zZl::i%{(zﬂz-—y?xuo-+te)34—6ﬁyuo@m«+ze)2—-12ﬁ2wﬂu(uo+—uz)—-8ﬁvu3}
—éw—wWM—mf—w—Mw+mﬁx
L=+ + 2 (B

mzﬁumﬂwmw+mﬁmew+mf—uﬁwmw+m+&m§
—fw+wwm—mf—w+m%+mﬁx

([>’+V) (g + u)x* + — (ﬁ+?)

223 :% {2 — ) + un)* + 6Byur(uo + uz)* — 12B%uoun(uo + up) — 8fyus}
2= DUl — ) — (B~ )+ )}
SR+ )

= S AOF — )+ 1) = 6o + )’ — 12w + ) + 8
—4w+wwm—mf—w+m%+mﬁx

——(ﬁ+V) (g + 1)x" + = (/3+V)

At the time for each division point, ¢, ..., #3, the following relations are satisfied:

uy = x(1o),

+
0 Ryt 0@,

up = x(t) =

uy = x(12),

Uy + U
2

uz; = x(t3) = - ag(uo —w)? + 0.

(17)

(18)

(19)

(20)

2D
(22)
(23)

(24)

Eqgs. (12)~(24) can be parameterized by uy and u, instead of u; and u3 so that hysteretic
restoring force in steady state can be determined by the maximum and minimum of the
displacement of the periodic solution. Even if f+7 = 0, that is, z cannot be described in terms of
exponential function, Egs. (12)—(24) are valid. It is noted that the parameters which correspond to
softening characteristics in Wen’s differential equation may correspond to hardening character-
istics in the piecewise power series expression when the amplitude of response becomes large
because of the approximation of exponential functions with polynomials.
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Using the piecewise power series expression, the equation of motion for the present system is of
the form

- A -
X+ox+(k+A)x— 5 (uo + ) + e21 + 222 + O(e?) = fcos wt. (25)

The linear natural frequency of this system is given by v/ k + 4.

4. Multiple time scale analysis

We next apply the method of multiple time scales to the present system (25) up to the second
order for the cases of primary and secondary resonance to obtain symmetric solutions and their
stability. It is noted that in this analysis, not only the solution but also the restoring force are
approximated due to the use of the piecewise power series expression.

4.1. Primary resonance

4.1.1. Expansion of the equation of motion
Introducing multiple time scales

T,=¢"t n=0,12,..., (26)

The time derivative can be expressed as the following:

d

E:DO+8D1+£2D2+”., (27)
d2
47 = D4+ 26DoDy + (D} + 2Dy D) + -+ (28)

where D, = 0/0T,.
We expand the displacement x and its maximum #, into the power series of & since uq is
unknown and determined by x(#j).

x:X0+8X1+82)C2+"', (29)

Uy = Uy + sUgy + gy + -+, (30)

where x; and ug;, i =0, 1,2, are the terms of O(¢'). Since the steady state response in the primary

resonance region can be assumed to be periodic and symmetric, i.e., x(f) = —x(¢ + n/w), X(1) =
—X(t + n/w) for any z, the maximum and minimum of the displacement satisfy the relation

Uy = —up. (31)

Moreover, we assume that the damping coefficient and the forcing amplitude is small and
introduce a detuning parameter ¢ for the primary resonance region as

S=¢, f=¢f, k+A4—o*=co. (32)
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Substituting Egs. (27)—(32) into Eq. (25) and equating the coefficient of like powers of ¢, the
following differential equations are obtained:

&l Déxo + w’xg =0, (33)
e': Dix| + w’x) = —axg — 0Doxg — 2DgD1xy — z} + f cos o Ty, (34)

821 D%Xz + 602X2 = —0X] — 5(D1X0 + D()X]) — D%XO — 2DOD2X0 — 2DOD1X1 — Z/2, (35)

where z| and z5 denote the coefficients of order ¢ and &, respectively, in the expression of z which
is obtained by substituting Eqs. (29)—(31) and (13)—(20) into Eq. (12) and re-expanding z to the
power series of ¢. The expressions of z} and z, are shown in Appendix A.

4.1.2. First order approximation
The solution of Eq. (33) is
xo =a(T, Ty, ...)cos{wTy+ 0(Ty, T>, ...)}, (36)

where ¢ and 0 are the amplitude and phase of the solution. Substituting Eq. (36) into Eq. (34)
yields

Dijxi + o*x; = R(Tp) — 2}, (37)
where
R\(Ty) = — cacos(wTy + 0) + dwasin(wTy + 0) + f coswTy
+ 2w sin(wTy + 0)D1a + 2wa cos(wTy + 0)D1 6. (38)

To eliminate the terms that produce secular terms, we determine the components of cos w7y
and sin w7y of the right-hand side of Eq. (37) and equate them to zero. The condition for the
component of cos wTy to vanish is evaluated by

to-i-c_;I 4 L
/ {Ri(Ty) — 21} cos T dTp = > / {Ri(Ty) — 2);} cos Ty d Ty, (39)
lo i=1 Yl

where 74 = t) + 2n/w.
To carry out the above integration, the times for each division point, 7, ..., #; are necessary.
From Egs. (36), (22), (24) and (31), the displacements at each time are

x(ty) =a+ 0@), x(t1) =0+ O(e),

x(t) = —a+ O(e), x(t3) =0+ O(e), (40)
so that we approximately set #, ..., #3 as the following:
0 0 0 3 0
fh=—— h=o—— h=———— f=n (41)
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Calculating Eq. (39) by using Eq. (41) yields

44ya® cos 0 4APa® sin O ,
f —oacos0+ ya3 €08 + pa”sin + dwa sin 0
i
+ 2w sin 0Dya + 2wa cos 6D, 60 = 0, (42)

where the relation uyy = a derived from Eq. (40) was used.
Similarly, the condition for the coefficient of sin w7} to vanish is

2 5 .
5wacosg+M+aasin0_M
3n 3
+ 2w cos 0Dja — 2wa sin D0 = 0. 43)

Obtaining Dia and D0 by solving Eqs. (42) and (43) yields a system of first order differential
equations describing the modulation of the amplitude and phase of the response as follows:

. _ da fsin0 2a*Ap
4 =eba= _8<7 + 2w 3wr )’ (44)
. ’ 2aA
b—epg—gf 0 JCosO 2ady) (45)
2w 2aw 3on

The amplitude and phase of the first order approximate solution correspond to the fixed point
of this system of differential equations. The stability of the solutions are determined by analyzing
the behavior of Egs. (44) and (45) in the neighborhood of the fixed points.

4.1.3. Second order approximation
We next derive the second order approximate solution xg + &x.
Substituting Dja and D;0 described with Egs. (44) and (45) into Eq. (37) and eliminating
secular terms yield
d4ya® cos(wTy + 0)  4APa® sin(wTy +0)
3n 3n a1
Eq. (46) can be regarded as the undamped linear vibration equation with piecewise periodic
external force, since z| on the right hand is defined in a piecewise manner. Although Eq. (46)
apparently has secular terms with frequency w, the terms are cancelled out by z| of four intervals

as a whole. x; can be obtained by solving Eq. (46) for each interval so that the constants of
integration satisfy the following conditions:

D(z)xl + w2x1 = —

(46)

(1) The displacements and velocities of the four solutions are continuous,

x11(t) = x2(f1),  x(h) = x13(k2),  x13(53) = x14(13), 47)
xX1(t) = X12(t1),  X12(f2) = X13(12),  X13(83) = X14(13), (48)
where xy;, i =1, ...,4, denote x| in interval i.

(2) The components of frequency w in one period of x; vanish, i.e.,

to+2n/w to+2m/w
/ X1 COS(L)T() dTO = O, / X1 Sil’leo dTO =0. (49)

t to

Evaluating these conditions yields x; as in Appendix B.
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We next derive a system of second order differential equations governing the amplitude and
phase of the response.

To eliminate the secular terms, substituting Egs. (36), (44), (45) and (B.1)-(B.4) into Eq. (35)
and equating the coefficients of cos w7 and sin w7y zero yields

3a3 Ap* cos 0 34y cos 0
aﬂ% — 0Djacos 0 — D%a cos 0 + aD,6? cos O — %
Ta* A2* cos 0 5aP A2 cos B 764> A cos 0
_ 2aD AP 2y
2407 dagr T 2abwcosO4 =g
56a® A%y? 0
_ A 08 + aD%@ sin 0 + adD0sin 0 + 2DyaD;0 sin 0
2T w2
4aA 1
+ 2Dyac sin 0 AU SO _ (50)

T

4aA 0
aD%H cos 0 + aoD;0cos 0 + 2DyaD;6 cos 0 + 2D,aw cos 0 + m

T
3a3AB? sin 0 . 3472 sin 0
- aﬂ%—i— 0Diasin 0 + D%asin@ — aD0sin 0 + %
T A sin0 54 A*? sin 0 764 A2 % sin 0
_ —2aDy0wsin ) — —— 5 >~
2407 2407 aFabesin YT
56a®A%y? sin 0 _ 51)
27 w?w?

The expressions of Dia, D30 and ug in these equations need to be evaluated. Da and D30 are
obtained by differentiating Dia and D0 with T using Eqgs. (44) and (45) and expressed as

Pa  8aPAB*  aPAPS  aAfycosO

Dia ="
197y 9w?n? on 3win
focos® frcos@®® Ofsinf@ 2aApffsind
— 2
4w? * daw? + ) * 3w*n (52)
D20 — 4 APy addy df cosO AffcosO fasin@ f?sin20 53)
P 902p2 3on daw 3w’n daw? 4alw?
To obtain uy, x(#y) is calculated by using Eqgs. (40), (41) and (B.1).
10 —3
X(to) = xo(to) + ex11(t0) + O(D) = a — ¢ Tl dy + 0.
18w3n
Therefore,
10— 37 ,
—_— Ay. 4
Uot 18031 aAy (54)

By solving Dya and D,0 from Egs. (50) and (51) using Eqgs. (44), (45), (52), (53) and (54), a
system of second order differential equations describing the modulation of the amplitude ¢ and
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phase 0 of the response is obtained as follows:
a= 8D161 + 82Dza
da fsin0 24°Ap
- F<? * 2w * RIOY S
L <4a3A2ﬂy @A Py  a*Ady  a*APo

9w3n? 3wt 6wm  3win
of cos0 aAffcosO aAfysinf fosin0
- — 55
+ 8w? 6w’ 3win + 8w’ )’ (33)
0 =eD0 + £°D,0
iy i_fcosH_QaAy
Lo 2aw 3on
i L R i .
48?3 48?3 16w 8w 16w
B 2624287 22a*A*?  aABd  aAyo B 0_2
27 w32 270312 6w*n  3win 8w’
_Afycos@ facos@_éfsin@ APf sin 0 (56)
6m3m 8aw? 8aw? RIOX A

4.1.4. Stability analysis

The real parts of the eigenvalues of Jacobian matrix M; about the steady state solution of
Egs. (44) and (45) determine the stability of the first order approximate solution so that the
solution is stable if tr(M;)<0 and det(M;)> 0. Similarly, the stability of the second order
approximate solution can be determined by Eqs. (55) and (56). It is confirmed that saddle-node
bifurcation occurs in the primary resonance region as shown in Section 5.1.2.

4.2. Secondary resonance

Following almost the same procedure as for primary resonance, we obtain an approximate
symmetric solution and a system of differential equations describing the modulation of amplitude
of second order superharmonic component of the response.

4.2.1. Expansion of the equation of motion
For the case of secondary resonance, the displacement x and its maximum u, and minimum u,
are expanded into the power series:

X=X0+8X1+82X2+'“, (57)

Uy = too + euor + &gy + -+, (58)
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Uy = Uyy + Uy + Szuzz + e, (59)

where x;, up; and u»;,i = 0,1,2 are the terms of O(g").
We assume that damping coefficient is small and introduce a detuning parameter ¢. External
forcing is not assumed to be small for the case of secondary resonance.

5=2¢, k+A=4w"+¢0, f=f. (60)

Substituting Eqgs. (27), (28), (57)-(60) into Eq. (25) and equating coefficients of like powers of &,
we obtain

A
& D%xo +4w’xy) = 0} (uoo + u0) + f cos w Ty, (61)
1. n2 2 A /
& D0x1 + 4w X1 = E(um + uzl) — 00Xy — 5D0X0 — 2D0D1X0 —Z, (62)

A
& D%Xz + 4w2xz :E(uoz 4+ uyp) — ox; — D%x() — 0(D1x9 + Dox1) — 2Dy D7 x¢
— 2DOD1X1 — Z/2, (63)

where z| and z5 denote the coefficients of order ¢ and &, respectively, in the expression of z which
is obtained by substituting Egs. (57)—(59) into Eq. (25) and re-expanding z to the power series of .
The expressions of z} and z5 are shown in Appendix C.

4.2.2. First order approximation
The solution of Eq. (61) is

% % (00 + u20), (64)
where a and b are the amplitudes of the superharmonic component with frequency 2w.

Hereafter, we consider the case that the solution is almost symmetric so that axb~0 and
ugp + ur9~0. Then the times for each division point are approximated as the following:

T v 3n
w T BT
It is noted that Eq. (65) do not include arbitrary phase as opposed to Eq. (41) for primary
resonance because the zeroth order solution (36) for primary resonance corresponds to free
vibration while Eq. (64) is the response of forced vibration without damping.

By solving uyy = xo(to) and uyy = xo(t2), ugo and uyy are obtained as

xo =acos2wTy+ bsin2wTy +

h=0, 4= (65)

f do’a
= --—— 66
0302 T A — dw” (66)
f dw’a
=2 = 67
120 3w A -—4w? ©7)
Substituting Egs. (66) and (67) into Eq. (64) yields the first order approximate solution,
f T A
Yo = acos 20Ty + b sin 20T+ 28210 ‘ (68)

302 A4
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Substituting Eq. (64) into Eq. (62) and eliminating the coefficients of cos 2wTy and sin 2w Ty
yield a system of differential equations describing the modulation of amplitudes of superharmonic
component of the response for the first order approximation:

) da ob 8APBfa 8Ayfb
=eDja=—¢e| 5 —— A 69
@z e 8(2 4o Bon | d5win)’ 69
. b oa 2ABfb  2Afya
h=eDih—=—e221 %4 _ . 70
e b( 2 40 T Bon  Bon (70)
4.2.3. Second order approximation
Substituting Egs. (66)—(70) into Eq. (62) yields
f of . A 8Af
D%xl +4w’x; = — {;cos Ty + 36{) sinwTy + Y —(lez + 45w];77: (Bb — va)cos 2w T
324f : A
= 24 (gt by sin 20Ty 4+ 2 (o + 101) 2, an
45w°n 2

x1 can be obtained in the piecewise manner using the same procedure as described in Section 4.1.3.
Moreover, by solving the following two equations, u; and u,; are obtained:

ugr = x11(to),  uz1 = x13(t2), (72)

where x11(f) and x;3(¢,) are the functions of uy; and uy;. It is noted that the times for each division
point, f, ..., %3, Eq. (65) are used in the above procedure.

Substitute xq, ..., x14 obtained above into Eq. (35) and evaluate the condition to make the
secular terms vanish. By solving D,a, D,b from the condition and using Egs. (69) and (70), a
system of differential equations governing the amplitudes of second order superharmonic
component of the response for the second order approximation are derived as follows:

g 8<5a ab N 8Apfa 8Ayfb>

2 4o 45w3n  4503m

82(—67A2/3f2ya 13Azﬂf2ya_Aﬂf2ya 4A45fya  19APBfoa
6075w 72 1620077 S4w’r  45w*n 1080w w
A2Pya®  2APya®  1TAXFF2b 1143292 AB*fb Af*b
T 3wir T 3er | 864007 | 2880w’ 14dwd | 1440
b 193A2B b 244A42Fb  8APSFb  T9Afeb  6*b
“Too T 101250772 | 30375072 | 1350r | 10800°n  6dar
354%8%a*h  35A4%%a*h  SARPARb 5AY*d*h AByab?

C 3840® 38403 %o | 32w 3on
2APyab®  SAFH 5AYWS AR Ay

T Ror T 340’ 3840 | 320 32w>’

(73)
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2 4o 4503 450m
2<—253A2[32f2a 314522 AP f2a 8*a 19642 2a

h— 8<5b oa N 2ABfb 2Afya>

3456007 1152007 ' 7205 ' 16w ' 3037507m2

294%[%%a A4 f*a 4A4Pofa 31Afyca | o’a | 354°Bd°
"337507n2 | 4050'rn  450in 1080w | 64w’ | 3843
1342023 S4B 54y2a 10742 %b 17428 *yb

38403  3Rw o 607502 1620w’n
ABf*yb 240fyb  314Bfob  A’Bya*b  2APya*b | SA*Bab?
"5405n  1350*n  1080wm | 6w3m  3on 3843
5429%ab*  ARPab* Ay ab*

38403  Ro  Ro )

(74)

It is noted that Egs. (69) and (70) for the first order approximation and Egs. (73) and (74) for
the second order approximation have trivial steady state solution, (a,b) = (0,0), which
corresponds to symmetric solutions. By substituting the solution (a, b) = (0,0) into Eq. (68) and
X11, ..., X14, the second order symmetric approximate solution is obtained as Appendix D.

4.2.4. Stability analysis

In the above analysis, the instability of the trivial solution (a,b) = (0,0) corresponds to the
divergence of a non-symmetric solution. We next evaluate the unstable parameter regions of the
trivial solution for the first order and the second order approximation.

Jacobian matrix M/ about the steady state solution («, b) = (0, 0) of Egs. (69) and (70) is derived as

5 8ABf o 8AYf

3 A 3
M, =¢ 2 45w n 4 45w m | (75)
o 24yf o 24pf

4o | 45031 2 45w37m

Since tr(M;) <0, det(M;) = 0 gives the stability limit outside which the symmetric solution becomes
unstable. It can be confirmed that the equilibrium point (a, b) = (0, 0) changes from stable node to
saddle point by crossing the limit for the first order approximation. By arranging det(M;) > 0, the
condition that the symmetric solution becomes unstable and non-symmetric solution diverges when
6 = 0 can be derived as the next inequality:

4B <37l. (76)

Similarly, for the second order approximation, the stability limit outside which the non-symmetric
solution diverges is given by det(M>) = 0 and tr(M>,) <0, where M, is Jacobian matrix of steady state
solution (a,b) = (0,0). We can confirm that this condition corresponds to pitchfork bifurcation
[19,20] for the second order approximation.

Although there exists the possibility of another bifurcation when tr(M») = 0, det(M>) > 0, it is
beyond the scope of this paper.

Tedious computations required in this section were performed by using Mathematica [23].
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5. Comparison with numerical integration

In order to examine the validity of the present analysis, we carry out the numerical integration
of Eq. (3) and compare the results with those of the multiple time scale analysis. We set 4 = 0.95
and k = 0.05 to consider the case that the hysteretic restoring force is predominant over the linear
one, and set the damping coefficient 6 = 0.1 and the amplitude of excitation /= 0.5 for the weak

damping and excitation. The linear natural frequency of the system is /k + A = 1.0.

5.1. Primary resonance

5.1.1. Phase plane trajectories

Fig. 2 shows the phase plane trajectories, where (a) and (b) are for the case of softening
hysteresis, while (c) and (d) are for the case of hardening hysteresis. The solid and dashed lines
represent, respectively, the second order and the first order approximate solutions obtained by
multiple time scale analysis. The dotted lines represent the numerical solutions of Eq. (3) obtained
by shooting method [24].

The orbits of analytical solutions and numerical solutions are in similar tendency. A good
agreement is found between the second order approximate solutions and the numerical ones.
Although the second order approximate solutions are given in the piecewise manner, the phase

Fig. 2. Phase plane trajectories: (a) =01, 7= 0.5, = 0.8 (softening); (b) f =03, 7=03, o =0.8 (softening);
(¢c) p=0.1, 7=—-0.5, = 1.25 (hardening); (d) f=0.3, = —0.5, @ = 1.15 (hardening). In all cases, 4 = 0.95,
k=005 45=0.1and f=0.5. , MS second order; — — —, MS first order; - - - -, numerical.
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plane trajectories are continuous and smooth. This is because the piecewise expression for
hysteretic restoring force is continuous at the times for each division point.

5.1.2. Resonance curves

Figs. 3 and 4 show the resonance curves of the softening and hardening hysteretic systems,
respectively, for several values of  and §. The solid and dashed lines represent the results of the
second order and the first order approximation, respectively, and the dotted lines represent those
of numerical integration. The resonance curves obtained from the first and second order multiple
time scale analyses are similar to the curves of numerical integration. It is noted that the second
order approximate solutions show better agreement with the numerical integration than the first
order ones.

5.2. Secondary resonance

5.2.1. Phase plane trajectories
Fig. 5 shows the phase plane trajectories of the second order approximate solution and the
numerical integration for four parameter choices. The theoretical results are calculated by
Egs. (D.1)—-(D.5), while the numerical results are calculated by numerical integration of Eq. (3).
Figs. 5(a) and (b) are for the case of softening hysteresis, while Figs. 5(c) and (d) are for the case
of hardening hysteresis. The solid lines represent the second order approximate solutions and the
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dashed lines represent the orbits of numerical integration. A fairly good agreement is found in
both the results.

5.2.2. Divergence of non-symmetric solution

The resonance curve of a softening hysteretic system obtained by numerical integration of
Eq. (3) is shown in Fig. 6 in order to explain how the symmetric solution bifurcates to non-
symmetric solutions. Point P corresponds to the primary resonance and points Q and R
correspond to the secondary resonance. Periodic solutions and hysteretic loops at the points P, Q
and R are computed by the shooting method and are shown in Figs. 7(a), (b) and (c), respectively.
While symmetric solution (Fig. 7(a)) is stable in the primary resonance region, symmetric solution
(Fig. 7(b)) becomes unstable and stable non-symmetric solution (Fig. 7(c)) diverges in the
secondary resonance region. The bifurcation diagram for the same hysteretic system is shown in
Fig. 8. As w increases or decreases, one symmetric solution becomes unstable and bifurcates to
two non-symmetric solutions. The divergence of non-symmetric solution corresponds to pitchfork
bifurcation, which qualitatively agrees with the stability analysis described in Section 4.2.4.

5.2.3. Unstable region of symmetric solution

Figs. 9 and 10 show the unstable regions of symmetric solutions for softening and hardening
hysteretic systems, respectively. In each figure, f and 7 are selected to satisfy condition (76). The
solid and dashed lines represent the results of the second order and the first order approximation,
respectively, and the dotted line represents the results of the numerical integration.

The unstable regions of symmetric solution diverge from point (f,w) = (0,/k + 4/2) and
spread over to upper left regions in softening systems (Fig. 9(a)) and upper right regions in
hardening systems (Fig. 10(a)). The regions become larger as non-linearity increases (Figs. 9(b)
and 10(b)) and move up as damping coefficient J increases (Figs. 9(c) and 10(c)).

The results of the first and second order approximations are qualitatively similar to those of
numerical integration for all cases. Moreover, the second order approximate results are
quantitatively closer to a numerical one than the first order results.

Maximum Displacement
N
(6}

15
1JQ .
.o
0.5 JktA JK+A
2
. N
0.4 05 0.6 0.7 0.8 0.9 1
W

Fig. 6. Resonance curve of a softening hysteretic system: f=0.1, 7=0.5, 4 =0.95, k =0.05, § =0 and f=0.5.
———, stable; - - - - - , unstable.
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6. Conclusions

A smooth hysteretic system subjected to harmonic excitation was analyzed. As a model for
hysteresis, Wen’s differential equation, which governs hysteretic restoring force by differential
equation, was used. To apply the method of multiple time scales, the piecewise power series
expression for hysteretic restoring force was proposed under the assumption that the non-linearity
of the restoring force is weak and the force—displacement curve draws a single loop.
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0=20;(c) f=0.1, 7= 0.5, 0 = 0.05. In all cases, 4 = 0.95 and k = 0.05. , MS second order; — — — —, MS first
order; - - - - - , numerical.

By using the piecewise power series expression and the method of multiple time scales, the first
and second order approximate solutions and the systems of differential equations describing the
modulation of the amplitudes and phases of the solutions were obtained for the cases of primary
and secondary resonance. Stability analysis for the solutions of the secondary resonance was also
performed and the unstable regions of symmetric solutions were determined.
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Fig. 10. Unstable regions of symmetric solutions for hardening systems: (a) f§ = 0.1, 7= —0.3, § =0; (b) f = 0.1,
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, A =0.95and k = 0.05.

, MS second order; — — ——,

Phase plane trajectories, resonance curves and the unstable regions of symmetric solutions
obtained from the analyses were compared with the results of numerical integration and the

validity of the present method was confirmed.

The proposed method can be applied to a large class of hysteretic systems. Extending the

method to the case of non-symmetric solution is the subject of further study in the future.
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Appendix A

The expressions of z|,, ..., z5, for the case of primary resonance are as follows:

2y =SB0t i),
o = 5B+ 95— i),
o= =SB By,
=~ DA ),
A= S~ — 3B — Moo + 68 — 7)ot — By — Sfruonu},
o = B+ 97— 3B+ 90 + 68+ 7)o — By — Ofotir
S = S~ — 3B — Dioxo — 68 — 7)ot + e+ 6fruonu}

A
2y =" B+ )55 = 3B(B + DigeXo — 6(B + 7)xox1 + By + OBoouon .

Appendix B

The expressions of xiy, ..., x14 for the case of primary resonance are as follows:

AR a*Ay  a*APcos(wTy+0) Sa*Aycos(wTy + 0)
40 ' do? 3w? B 9w’n

22 AB(w Ty + 0) cos(wTy + 0)  a>APcos 2(wTy + 0)
+ +

3w’n 122

a’*Aycos2(wTy +0)  S5a>AB sin(wTy + 0)
B 1202 B 90’n

2a* Ay(w Ty + 0) sin(w Ty + 0)
B 3w3n

x11(Ty) =

b

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(B.1)
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aAB  a*Ay  a*APcos(wTy+0) Sa*Aycos(wTy + 0)
40 do? 3w? B 9w’n

202 AB(w Ty + 0) cos(wTy + 0)  a?APcos 2(wTy + 0)
+ +

3w’n 122
a*Aycos2wTy +0)  2a*>Ay sin(wTy + 0)
122 + 3w?

S5 ABsin(wTy + 0)  2a’>Ap(oTy + 0) sin(wTy + 0)

B 9w3n B 3w3n

x12(To) =

) (B.2)

_@Ap a4y aABcos(wTy +0)  Sa*Aycos(wTy + 0)
4o 4a? ? 9w’n
282 AB(0 Ty + 0) cos(wTy + 0)  a*Ap cos 2(wTy + 0)
_I_ —
3w3n 1202
@’ Ay cos 2Ty +0)  2a°Aysin(wTy +0)  5a°Ap sin(wTp + 0)
120? 3w? 9w3n
B 282 Ay(wTy + 02) sin(wTy + 0), (B.3)
RIORY

x13(To) =

AR a*Ay  dPABcos(wTy+0) 5a>Aycos(wTy + 0)
402 40? w? B 9w?n
22 AB(wTy + 0) cos(wTy + 0)  a?AP cos 2(wTy + 0)
+ —
3win 1202
a’Aycos2(wTy +0)  4a*Aysin(wT, + 0)
a 1202 32
S5a’ABsin(wTy + 0)  2a*Ay(wTy + 0) sin(wTy + 0)
B 9w3n B 3w3n '

x14(To) =

(B.4)

Appendix C

The expressions of z},, ..., z5, for the case of secondary resonance are the following:
A
7 =3 {—Blugo — t20)* + (B — )t + t20)* — 4(B — P)(tioo + uzo)xo + 4(B — y)x3}

A
- 5(”01 + uz1), (€.

2 Zg {—Buoo — u20)* + (B + 7)o + uz0)* — 4B + 7) (oo + uz0)xo + 4(B + p)x3}

A
) (uo1 + 1), (C2)
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2o = 2 Bluoo — o) — (8 — )t -+ )+ A — oo + o)y — 40 — 7))

A
) (uo1 + ua1), (C3)

21 =5 (oo — o) — B+ 7)ago + 10?4+ )Mo + o) — 4B + 3}

A
) (o1 + 1), (C4)

24y = 8o — 12wl + o) + 6f oo -+ ) + (26 — 7)aa + )’}
2B~ D B0 — )’ — (B~ ) + )0
LB~ o+ 0)d + % (B~
+ g [—2P(uoo — u20)(uo1r — u21) + 2( — ) (oo + t20)(uo1 + u21)

+ 8(B — p)xox1 — 4B — ) {(uor + uz1)xo + (uoo + u20)x1}]

A
) (o2 + un), (C.5)

Z/zz :% {8/33?”30 - 1232%0”20(“00 + u20) — 6Byuz0(uoo + M20)2 + (2ﬁ2 - ?2)(M00 + M20)3}
2B+ D B0 — 1) — (B 4+ 7)o + 1)’ o
- g(ﬁ +9) (oo + uzo)xg + % (B + V)2x(3)

412 uon — o)y — 1) + 208 + )t -+ ) + 1)

+ 8(B + p)xox1 — 4P + ) (uor + uz1)xo + (oo + t20)x1}]

A
) (U2 + un), (C.6)

Zs Z% {—8Byu3y — 127 uooua0(uoo + ta0) + 6fyune(ugy + u20)* + (28> — 7*)(too + u20)*}
A
-3 (B — 1) {Bugo — t20)* — (B — y)(uoo + 20)} X0

— g([} — y)2(u00 + uzo)xg + g(ﬁ - V)zxg



N. Okuizumi, K. Kimura | Journal of Sound and Vibration 272 (2004) 675-701 699

+ g [2B(uo0 — u20)(uo1r — ua1) — 2(B — y)(uoo + u0) (o1 + uz1)
= 8(B — y)xox1 + 4B — p){(uor + ua1)xo + (oo + u20)x1}]

A
) (uo2 + un), (C.7)

Zng :% {8Byudy — 12B%uot0 (oo + ua0) — 6Byuoo(too + ta0)* + (28> — y*) (oo + t20)’ }
BB+ B ln — w0 — (B o+ ) o
2B+ )+ 5 (B

+ g [2B(uoo — u20)(uo1 — u21) — 2(B + y)(uoo + ua0)(uo1 + Ua1)
— 8(B + )xox1 + 4B + y){(uor + uz1)xo + (uoo + u20)x1}]

- g(uoz + u). (C.3)

Appendix D

The second order symmetric approximate solution for the case of secondary resonance is
expressed as follows:

J
Xo = ﬁcos wt, (D.1)
ey oy A
" T 14405(A — 40?) " 14405(A — 40?)  360%(A — 4ar?)
B Af?y _focoswr  ABf*cos 2wt Af?ycos 2wt
360*(A — 4w?) 9w* 144w 144
N of sin wt ABfirsin 2wt ABf*tsin 2wt Af*ytsin 2wt, (D)
93 288wo 1443 14403
o A Ay Ay
2 T 144054 — 402) T 3604 (A — 4w?)  14405(A — 4r?)
B ABf? _ focoswt  ABf*cos2wt  Af?ycos 2wt
36m*(A — 4w?) 9w* 1440° 1440°
Ofsinwt  APf>msin 2wt N Af*ymsin 2wt ABf>tsin 2wt
9?3 288wb 144w 1443
_ Af?ytsin 201 (D.3)

14405 °
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o AP APy ey
360° (A — 407) T 3604 (A — 4?)  14405(A — 4a?)
A*f?y focoswt AP cos 2wt
144094 — 40?)  9* 14400
Af*ycos2wt  dfsinwt  APfimsin2wt  Af*ymsin 2wt
14406 90 9606 | 144aS
ABf?tsin 20t Af*ytsin 2cut’ (D)
1443 14403
Y R
144004 — 4w?) 36044 — 4w?)  14400(A4 — 4w?)
Af*y focoswt  APf?cos2wt  Af*ycoswt
36044 — 40?) Yot 14406 14406
Sfsinwt  APfmsin2wt  Af*ynsin 2wt  APf3tsin 2wt
903 9%6wb | Tab | 144
Af*yt sin 2wt
1443 (D.5)
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